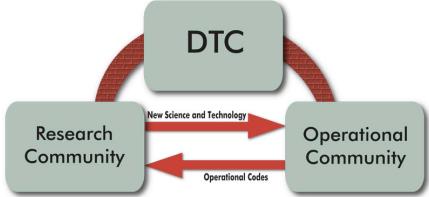
13rd JCSDA Technical Review Meeting & Science Workshop on Satellite Data Assimilation, NCWCP, College Park, MD, 13-15 May, 2015

Data Assimilation Activities at the Developmental Testbed Center (DTC)


Hui Shao^{1,} Ming Hu², Kathryn Newman¹, Chunhua Zhou¹, Don Stark¹, Hailing Zhang³, Ligia Bernadet², and Zhiquan Liu³

¹ NCAR/Research Applications Laboratory(RAL)
 ² NOAA/Earth System Research Laboratory (ESRL)
 ³NCAR/Mesoscale & Microscale Meteorology (MMM) Laboratory

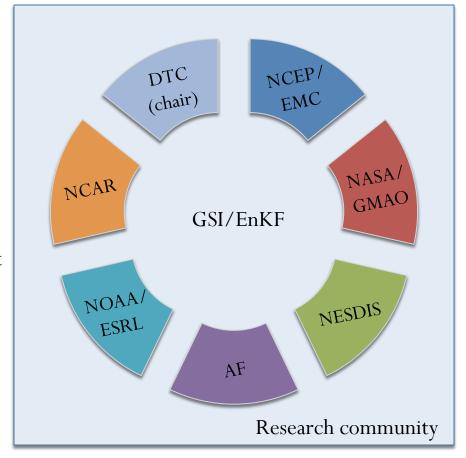
Special acknowledgement to John Derber, Michael Lueken, Russ Treadon, Andrew Collard, Mingjing Tong, Jeff Whitker, Henry Winterbottom, and other developers at NCEP/EMC, NASA/GMAO, NCAR, NOAA/ESRL, and Air Force

What is the DTC?

- **Purpose**: facilitate the interaction & transition of NWP technology between research & operations
 - O2R: Support operational NWP systems to the community
 - R2O: Perform Testing & Evaluation (T&E) on promising NWP innovations for possible operational implementation
 - Interaction between R & O: Workshops, Visitor Program, Newsletter, Training
- Jointly sponsored by NOAA, Air Force, NSF, & NCAR

Software Systems

- Gridpoint Statistical Interpolation (GSI):
 - Annual community release since 2009
- Ensemble Kalman Filter (EnKF):
 - First beta release in January 2015


Upcoming GSI/EnKF events:

- Release: community GSI v3.5, EnKF v1.0, July 2015
- Onsite tutorial (including hands-on practical sessions): GSI-August 11-13, EnKF-August 13-14, 2015, Boulder, CO

Close collaboration between DTC & developers is critical to the success of this work!

Code Management

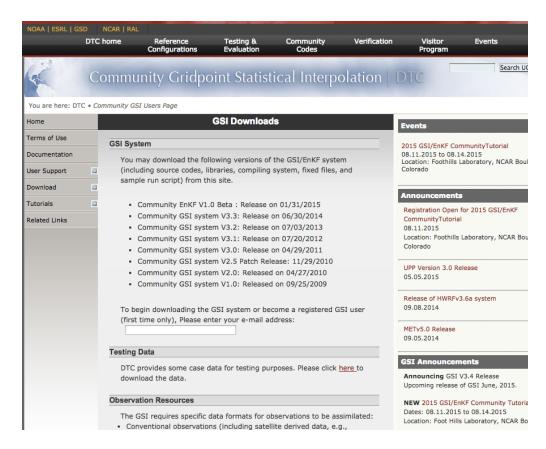
- Data Assimilation (DA) Review Committee (DRC)
 - Goal: connecting the GSI/EnKF operational agencies and the broader research community under a unified community framework
 - Transitioned from GSI Review Committee (since 2010), with new membership for EnKF
 - Coordinate GSI and EnKF development
 - Perform code review
 - Over past 4 years, ~100 tickets were received. Many combined changes from multiple teams
 - All GSI updates, including those for operations at NOAA, NASA, AF and other research facilities, come from the GSI trunk code the GRC has reviewed and approved

Code Repository

- Access to the latest code
- The DTC and EMC decided to merge the EnKF and GSI repositories in 2014, avoiding potential code divergence
 - EnKF uses GSI for innovation calculation. Changes in GSI's observation operators and resulted diagnostic files will affect EnKF
 - The DTC hosts a community repository
 - Mirrors all components residing within EMC's GSI operational repository
 - Contains files not necessarily required by internal EMC users, e.g., supplemental libraries required for running GSI and EnKF, multiple-platform compilation tools, simplified run scripts, community- shared diagnostic utilities, etc.

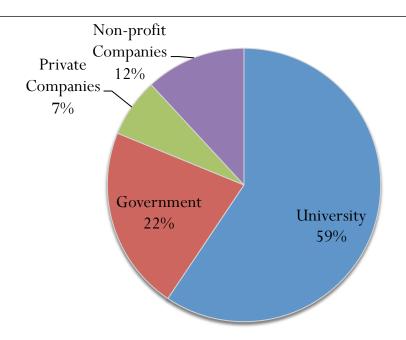
RAP implementation GFS implementation

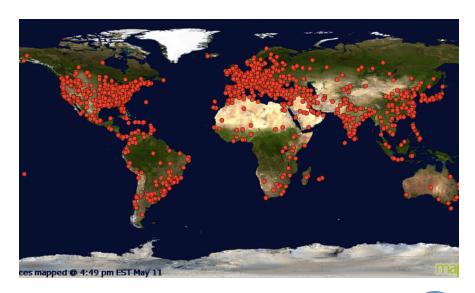
Trunk is continuously updated


Community release NAM implementation

Operational implementation and community releases come from trunk snapshots

Publicly Released Package


- GSI source code
- EnKF source code
- Auxiliary files and reference configurations
- NCEP library source code
- Multiple-platform compilation tool for EnKF, GSI, and libraries
- Simplified run scripts
- Diagnostic and display utilities
- User's Guide
- Testing cases
- Online practice


- GSI user's webpage: http://www.dtcenter.org/com-GSI/users/index.php
- EnKF user's webpage: under construction
- Both share the same download page

Community Users

- 7 annual releases since 2009
- On-site training:
 - 5 GSI residential tutorials
 - 2013: co-hosted with EMC and JCSDA at NCWCP
 - 3 GSI instructional sessions
 - 1 BUFR/PrepBUFR tutorial
 - 1 EnKF instructional session ~400 participants from U. S. and international communities
- 2 GSI workshops
 - NCAR, Boulder, CO
 - NCWCP, Maryland, MD
- Registered users:
 - ~1300 (up to April, 2015)
 - Additional registered through the HWRF community release

Affiliation of registered users

Who is accessing the GSI User's Webpage?

Code Test

- Repository code tests
 - Multiple platforms/compilers (DTC)
 - Multiple operational configurations (EMC)
- Pre-implementations (operational centers, e.g., EMC, AF,...)
- DTC community tests
 - Functionally similar testing environment
 - End-to-end system and archived operational data and background files
 - Can be tuned to operational setup (model versions, workflow, namelists)
 - Facilitate community development tests
 - DTC Visitor Program
 - Pre-release tests: testing GSI/EnKF, as well as libraries and scripts
 - Independent code tests in support of operational applications, providing recommendation for pre-implementation tests and identifying research areas
 - Existing capabilities
 - Developmental community research

T&E in Support of R20

Air Force DTC tests

AF Regional theatres: Phased implementation

AF Global-coverage: Jul, 2013

2012

Test GSI for enhancing GSI regional operations

Test for GSI regional pre-implementation

Tests for AF globalcoverage GSI preimplementation

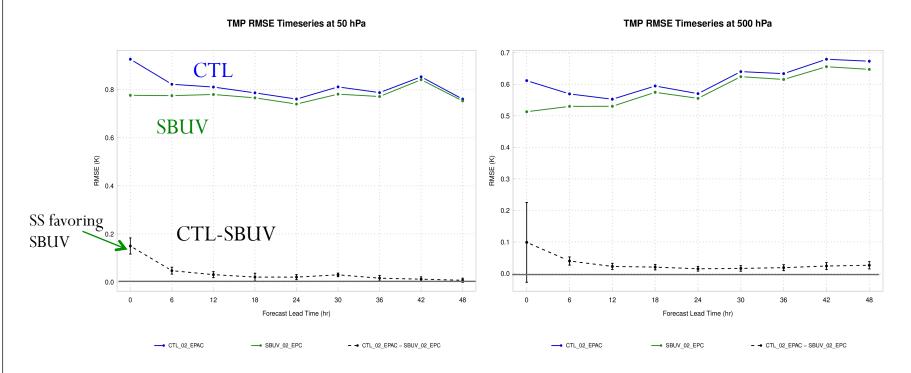
Alternative DA system/technique T&E

Observation impact studies and in-house GSI mitigation:

- Sea level pressure bias: GSI-ARW inconsistencies
- Observation Impact: SBUV, GOME (inc. ozone channels)
 - Raised model top (10 to 2 mb)
- Forecast Sensitivity to Observations*

Test configuration for regional theaters & community contributions:

- Sea level pressure bias: GSI surface DA QC issues
- Regional background errors*


Test configuration for AF outer domains-> configuration in 2013 implementation (global coverage domains)

- System/technique comparison:
 - WRFDA, DART versus GSI
 - PrepBUFR (GSI data format) versus Little_r (WRFDA data format)
- Background error generation
- Data impact study

* Community utilities

a

SBUV/2 Impact: AF GSI-ARW Meso System

RMSE of temperature forecasts at 50 hPa and 500 hPa

- O_3 not forecast variable in ARW
 - GFS ozone used for background
 - Indirect impact on analysis and forecasts

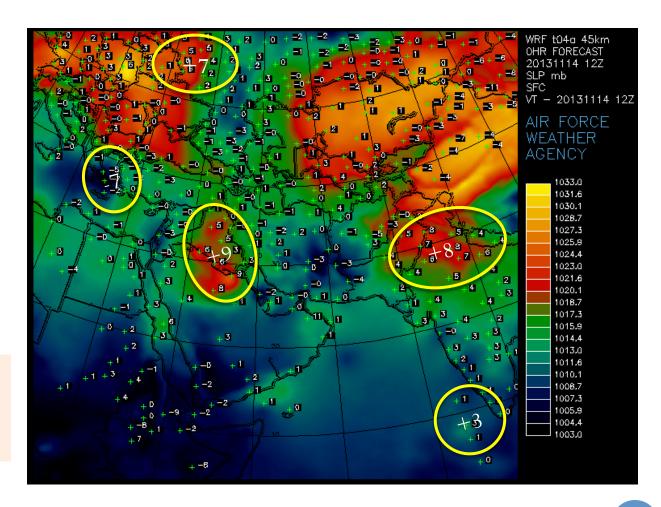
SBUV/2 Impact (cont.)

99% CI Statistical Significance Table: SBUV vs. CTL02 (EPAC)

TEMP RMSE		Forecast Lead Time (hr)									
		0	6	12	18	24	30	36	42	48	
	50	EXPT	EXPT	EXPT	EXPT	EXPT	EXPT	EXPT	EXPT		
	100	EXPT					CTRL				
Pressure Levels (hPa)	250				CTRL	CTRL	CTRL	CTRL	CTRL	CTRL	
	400		EXPT	EXPT				EXPT			
ם ב	500		EXPT	EXPT	EXPT	EXPT	EXPT	EXPT	EXPT	EXPT	
Sur	700										
6	850										
-	925	EXPT					CTRL	CTRL			
		Forecast Lead Time (hr)									
	ind RMSE	0	6	12	18	24	30	36	42	48	
	50	EXPT	EXPT	EXPT	EXPT	EXPT	EXPT		EXPT	EXPT	
	100	EXPT	EXPT			CTRL					
2	250						CTRL				
S.	400	EXPT	EXPT	EXPT	EXPT	EXPT					
Pressure Leveis (nPa)	500	EXPT		EXPT	EXPT			CTRL			
	700		EXPT	EXPT	EXPT						
6	850	EXPT	EXPT								
	925	CTRL	EXPT	EXPT	EXPT						
		Forecast Lead Time (hr)									
V-Wind RMSE		0	6	12	18	24	30	36	42	48	
_	50	EXPT	EXPT	EXPT	EXPT	EXPT	EXPT	EXPT		EXPT	
2	100	EXPT									
2	250		EXPT	EXPT							
2	400	EXPT	EXPT	EXPT	EXPT						
2	500	EXPT	EXPT	EXPT							
	700	EXPT	EXPT	EXPT	EXPT						
Pressure Levels (hPa)	850	EXPT					EXPT				
•	925		EXPT	EXPT			EXPT				
			Forecast Lead Time (hr)								
SPI	H RMSE	0	6	12	18	24	30	36	42	48	
	50		-							-	
2	100										
5	250						CTRL		CTRL		
rressure Leveis (nra)	400	CTRL		EXPT	EXPT	EXPT					
2	500		CTRL			EXPT	EXPT	EXPT	EXPT		
5	700							EXPT			
8	850				CTRL	CTRL	CTRL	CTRL	CTRL	CTRL	
ď	925				CTRL	CTRL	CTRL	CTRL	CTRL	CTRL	

- Temperature:
 - Positive impacts at upper- and mid-levels
 - Degradation at ~250
 hPa
- Winds:
 - Positive impacts
 particularly at early lead times
- Mixed results for specific humidity
 - Negative at lower levels

Green shading: SBUV better Blue shading: CTL better


Reported Real-Time SLP issues

SLP is not an analysis variable, nor a forecast variable:

 Both DA and DA beyond (postprocessing) investigated

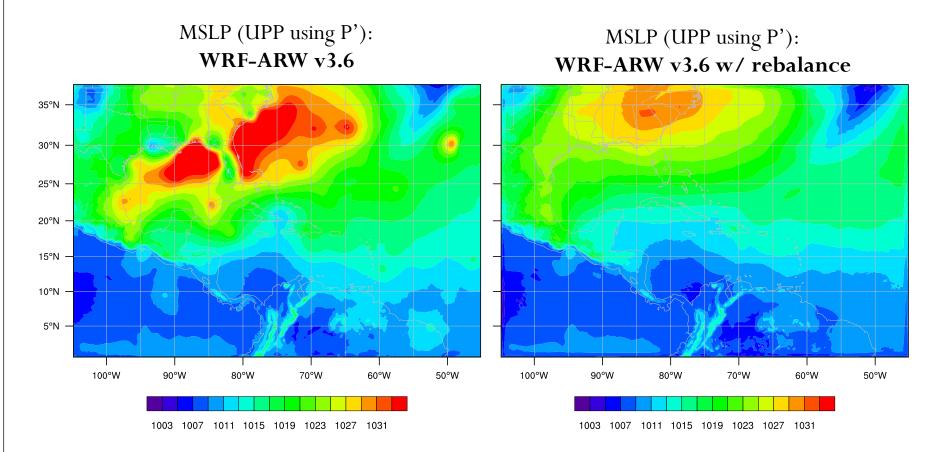
SLP derived from GSI analysis:

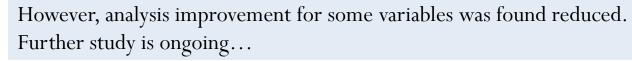
RMSE=2.9, Bias=1.0

Inconsistency between ARW and GSI Control/ Prognostic Variables

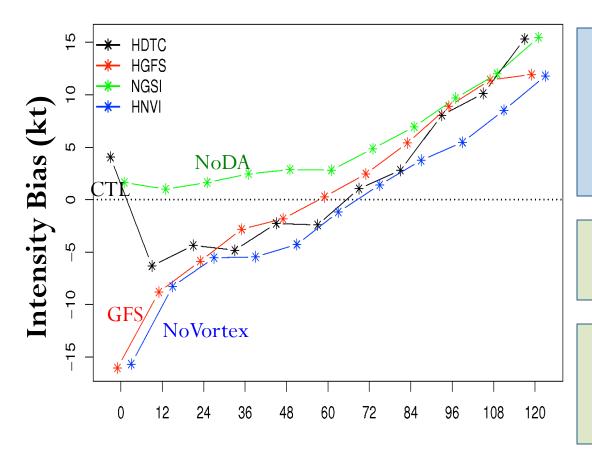
- ullet Geopotential height ($oldsymbol{\phi}$): prognostic variable in ARW; no update from GSI
- Lowest model level pressure perturbation (P) is used in ARW for MSLP computation not dry air mass (μ) or surface pressure (Ps) perturbation directly from GSI analysis

	GSI	WRF-ARW
Control/ Prognostic variables	Δ Τ Δ P s Δ q Δ μ	φ μ θ
Computed/diagnostic variables	$\Delta \theta$ (from ΔT)	α Ρ


Inconsistency between ARW and GSI Control/ Prognostic Variables (cont.)


- ullet Geopotential height ($oldsymbol{\phi}$): prognostic variable in WRF-AR; no update from GSI
- Lowest model level pressure perturbation is used in ARW for MSLP computation not dry air mass (μ) or surface pressure (Ps) perturbation directly from GSI analysis
- Apply a "rebalance" code to compute the missing variables

	GSI	"Rebalance"	WRF-ARW
Control/ Prognostic variables	ΔΤ ΔΡs Δq Δμ	Тμq	φμθ
Computed/ diagnostic variables	$egin{array}{ccc} \Delta & heta & (from \ \Delta & T) \end{array}$	Ραφ	αΡ



Resulting MSLP field

TC Inner-Core DA

HDTC: control as 2014 ops. (Uses DA and vortex init)

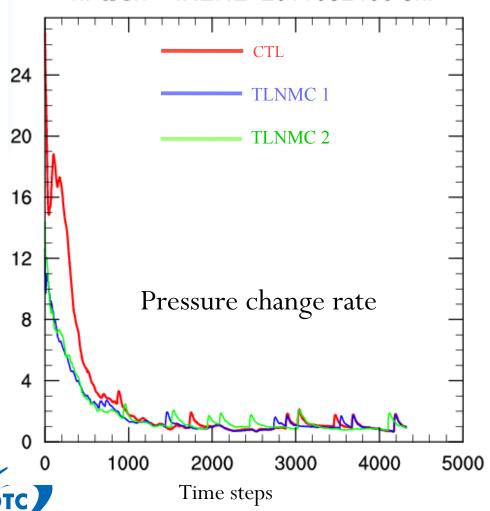
Spin down in first 6 hours Why? How to improve?

Remove DA (NGSI)

Improved bias

Remove Vortex Init (HNVI)
Remove both (HGFS)

No spin down, but low bias


- Spin down only occurs when both DA and vortex initialization present
- Points to an imbalance introduced by DA, which is done after the vortex init

Developmental Testbed Center-

Improving Balance in DA

hPa/3h - IRENE 2011082400 6hr

Control (CTL)

Large pressure fluctuations in beginning of simulation

TLNMC

Two options in **Tangent Linear Normal Mode Constraint**applied lead to improvement in balance in initial fields

Ongoing additional tests show promising results

Developmental Testbed Center

Future Plans

- Continue to provide community support of GSI and EnKF
 - Encourage more contributions from the research community
- Testing and evaluation of new development and in-depth study of operational/research issues
 - EnVar for regional applications
 - High resolution DA
 - Extreme events (hurricanes, etc)
 - Global applications