Task 1. Sensitivity tests on traditional and non-traditional observation sources Task 4. Mitigation of GSI issues

Hui Shao

Kathryn Newman, Chunhua Zhou, Christopher Williams, Ming Hu*

11 March 2015

* Cost shared by other partners. Air Force GSI work leverages insight/experience from larger DTC DA team.

Developmental Testbed Center

Task 1. Sensitivity tests on traditional and non-traditional observation sources

Test at least 2 types from list:

- 1. GCOM-WI AMSR2 (microwave radiances) Lack GSI capability
- 2. NPP CRIS (IR radiances)
- 3. NOAA-16/17/19 SBUV/2 (Ozone)
- 4. METOP-A GOME-2 (Ozone)

Functionally-similar testing environment

- Difference:
 - Background and boundary conditions
 - DTC GFS
 - Air Force UM
 - Updated system
 - ARW 3.6.1 (enable model top increase)
 - GSI v3.3 (2014)
- SBUV and GOME obtained from NCEP BUFR

Model top test

Experiments:

- CTL10: control
 - Air Force operational configuration, except RRTMG used rather than RRTM/ Dudhia
 - 57 vertical sigma levels
 - 10 hPa model top
- CTL02:
 - Stratospheric lapse rate applied
 - 62 vertical levels
 - 2 hPa model top

Model top test - GSI diagnostics

- Same channel selection for both configurations
- 2 hPa model top shows smaller bias

Model top test: Verification against ERA-I

Improvement from 2 hPa model top

- Overall improvement throughout T field
- Strong signal of improvement for longer lead times for zonal wind, upper and lower level meridional wind
- Mixed results for specific humidity

Statistically Significant (SS) pairwise differences (99%): Green shading: 2 hPa model top better Blue shading: 10 hPa model top better Developmental Testbed Center

Observation sensitivity experiment design

- Testing period: 1-31 August 2014
- 48-h deterministic forecasts initialized at 00/12
- Experiments:
 - **CTL**: performed in each of individual testing domains, with same configuration as in CTL02, with all current AFWA conventional and radiance data assimilated
 - **SBUV**: with additional assimilation of Solar Backscatter Ultraviolet (SBUV/2; v8) profile ozone
 - NOAA 19
 - **GOME**: with additional assimilation of Global Ozone Monitoring Experiment (GOME-2) total ozone
 - Metop-a, Metop-b
 - CrIS: excluded CrIS data assimilation
- Verification against ERA-Interim (ERA-I) reanalysis using Model Evaluation Tools
 (MET)

Caveats

- Two additional domains created to capture satellite overpasses
- O₃ not forecast variable in ARW
 - GFS ozone used for background
 - Indirect impact on analysis and forecasts

E. Pacific Domain – SBUV, CrIS

SBUV/2 Impact: verification against ERA-I

99% CI Statistical Significance Table: SBUV vs. CTL02 (EPAC)

- Temperature:
 - Positive impacts at upper- and mid-levels
 - Degradation at ~ 250 hPa
- Winds:
 - Positive impacts particularly at early lead times
- Mixed results for specific humidity
 - Negative at lower levels

Green shading: SBUV better Blue shading: CTL better

DTC .

SBUV/2 Impact: verification against ERA-I

RMSE of temperature forecasts at 50 hPa and 500 hPa

SBUV ozone forecast impact

Temperature 12 hr forecasts @400hPa

SBUV-ERA

400 hPa Pairwise Temperature Difference

Red points: pairwise SS positive impacts from SBUV

0.16

0

-0.04

-0.1

-0.16

Generally cooling effects from SBUV assimilation

DTC

0.47

0.3

0.13

-0.3

-0.47

0 -0.13

GOME-2 Impact: verification against ERA-I

99% CI Statistical Significance Table (RMSE): GOME vs. CTL02 (ATL)

- Fewer SS differences relative to SBUV experiments
- Mixed or overall neutral results

Green shading: GOME better Blue shading: CTL better

Forecast Sensitivity to Observations (FSO)

- Observation sensitivity tests were conducted using the GSIbased FSO tool developed by NCAR MMM
 - WRF-ARW/ WRFPLUS v3.6.1
 - 4DVAR branch of GSI, based on GSI v3.2 (2013)
- Testing period: 4-13 August 2014, focus on impact of 12-h forecasts
- E. Pacific domain with same model & data assimilation system configurations, observations and radiance bias correction coefficients as data impact tests
- Impact determined using own analysis

FSO: ozone impact

Forecast error reduction from ozone and radiance data

- Radiance data gives large total impact
- Ozone data impact per observation large

CrIS impact

- Verification against ERA-I showed neutral impact
 - Overlapping with existing radiance data
- FSO shows slight positive impact in total

CrIS impacts per channel

- Certain channels have negative impacts
- Diurnal changes for channel behaviors

Summary (Task 1)

- Increasing model top from 10 hPa to 2 hPa presents overall improvement to analysis and forecasts
- Assimilating SBUV presents generally positive impacts
 - Improved T analysis for most levels
 - Wind improvements for short term forecasts (~18 h)
 - Cooling pattern from SBUV
- Assimilating GOME presents generally neutral (mixed) results
- Assimilating CrIS produces neutral impacts
 - Overlaps with other existing radiance data
 - Further study on channel selections recommended
- FSO shows potential for detailed observation impact studies
 - Timely update to the adjoint code is required

Task 4. GSI mitigation for AFWA

- Sea level pressure (SLP) errors
- > CrIS data usage reduction

Reported SLP issues

SLP is not an analysis variable, nor a forecast variable:

 Both DA and DA beyond (postprocessing) investigated

SLP derived from GSI analysis: RMSE=2.9, Bias=1.0

DTC

Verification for GSI SLP "analysis" (Analy-obs) at 12Z 20131114

Post-processing discrepancies

• AFWA delivered post-processing (PP) subroutines for SLP to DTC

2 keys to reproducing problem:

- 1. Must use wrfout at analysis time (NOT wrfinput directly generated by GSI)
- First level pressure perturbation P' (0,:,:) needs to be used for surface pressure (Psfc) in MSLP computation – not dry air mass (MU) or Psfc directly from GSI analysis

Wrfout and wrfinput files

• Why are there differences between the GSI analysis and the ARW analysis files?

wrfout (0) -wrfinput

- Inconsistency between GSI and ARW for P' field
 - WRFDA shows a consistent field (NOTE: GSI doesn't update P', therefore background)
 - Is the output from GSI different than ARW expects?

GSI vs. WRFDA QVAPOR increments

WRFDA

22

GSI vs. WRFDA temperature increments

GSI

T increment (1st level)

WRFDA

T increment (1st level)

GSI vs. WRFDA dry mass (MU) increments

MU increment

MU increment

Developmental Testbed Center-

DTC

GSI

WRFDA formulation

• WRFDA code includes da_transfer_xatowrf which computes $\Delta\theta, \Delta P, \Delta\phi, \Delta\mu$ using $\Delta T, \Delta P_s, \Delta q$ to initialize WRF model

Increments of mixing ratio water vapor at levels η_k : $q'_k = \frac{qv'_k}{(1-qv_k)^2}$

Increments of dry air mass in column:
$$\underline{\mu'} = \frac{p'_{sfc} - (\mu + \mu') \times \int_{0}^{1.0} q'_{k} \, d\eta w}{1 + \int_{0}^{1.0} q_{k} \, d\eta w} = -\frac{p'_{sfc} + (\mu + \mu') \times \int_{1.0}^{0} q'_{k} \, d\eta w}{\int_{1.0}^{0} (1 + q_{k}) \, d\eta w}$$

Increments of the pressure at levels η_k obtained from increments of Ps and wv mixing ratio:

 $p'_{\eta w_{-k}} = p'_{\eta w_{-k+1}} + \int_{\eta w_{-k}}^{\eta w_{+k+1}} \left\{ \underline{\mu'} \times (1+q_k) + (\bar{\mu}+\mu') \times q'_k \right\} d\eta w \quad k = kte, \dots, kts. \quad \text{where} \quad p'_{\eta w_{-k}te+1} = 0.0$

$$p'_{k} = \frac{p'_{\eta w + k + 1} + p'_{\eta w + k}}{2}$$

Increments of potential temperature at levels η_k : $\theta_k = t_k \times \left(\frac{p_k}{p_{00}}\right)^{-\frac{\kappa}{c_p}}$ $\theta'_k = \theta_k \times \left(\frac{t'_k}{t_k} - \frac{R}{c_p}\frac{p'_k}{p_k}\right)$

Increments of geopotential height at levels \mathcal{W}_k : $\varphi'_{k+1} = \varphi'_k - \int_{\eta w_k}^{\eta w_k + 1} \left(\frac{\mu'}{\rho_k} + (\mu + \mu') \times \frac{\rho'_k}{\rho_k^2}\right) d\eta w$, $k = kts, \dots, kte$.

Solve GSI has no such subroutine: $\Delta T, \Delta P_s, \Delta q, \Delta \mu$ -> computes θ from T, P_s (bkgd)

WRF-ARW initialization

• What happens between wrfinput and 00H wrfout?

Prognostic variables

$$\begin{array}{c} \partial_{t}U + (\nabla \cdot \mathbf{V}u) + \mu_{d}\alpha\partial_{x}p + (\alpha/\alpha_{d})\partial_{\eta}p\partial_{x}\phi = F_{U} \\ \partial_{t}V + (\nabla \cdot \mathbf{V}v) + \mu_{d}\alpha\partial_{y}p + (\alpha/\alpha_{d})\partial_{\eta}p\partial_{y}\phi = F_{V} \\ \partial_{t}V + (\nabla \cdot \mathbf{V}v) - g[(\alpha/\alpha_{d})\partial_{\eta}p - \mu_{d}] = F_{W} \\ \partial_{t}\Theta + (\nabla \cdot \mathbf{V}\theta) = F_{\Theta} \\ \partial_{t}\mu_{d} + (\nabla \cdot \mathbf{V}) = 0 \\ \partial_{t}\phi + \mu_{d}^{-1}[(\mathbf{V} \cdot \nabla\phi) - gW] = 0 \\ \partial_{t}Q_{m} + (\nabla \cdot \mathbf{V}q_{m}) = F_{Q_{m}} \\ \end{array}$$

26

Developmental Testbed Center

DTC

What about RAP?

2014061515 Partial cycle

1st Level P difference: wrfinput-wrfout(0)

Rebalance formulation – P'

Perturbation of the pressure at level h_{kte} :

$$p'_{kte} = -\frac{1}{2} \int_{\eta w_{kte}}^{\eta w_{kte+1}} \left(\mu' + q'_{kte} \times \left(\mu' + \overline{\mu} \right) \right) d\eta w = -\frac{1}{2} \int_{\eta w_{kte}}^{\eta w_{kte+1}} \frac{\left(\mu' + \frac{q'_{kte}}{1 + q'_{kte}} \times \overline{\mu} \right)}{\left(\frac{1}{1 + q'_{kte}} \right)} \times \frac{1}{\left(\frac{1}{d\eta w} \right)}$$

WRF-real code

From the levels h_{kte-1} to h_{kts} ,

$$p'_{k} = p'_{k+1} - \int_{\eta_{k}}^{\eta_{k+1}} \left(\mu' + \frac{\left(q'_{k+1} + q'_{k}\right)}{2} \times \left(\mu' + \overline{\mu}\right) \right) d\eta = p'_{k+1} - \int_{\eta_{k}}^{\eta_{k+1}} \frac{\left(\mu' + \frac{0.5 \times \left(q'_{k+1} + q'_{k}\right)}{1 + 0.5 \times \left(q'_{k+1} + q'_{k}\right)} \times \overline{\mu}\right)}{\left(\frac{1}{1 + 0.5 \times \left(q'_{k+1} + q'_{k}\right)}\right)} \times \frac{1}{\left(\frac{1}{d\eta}\right)}$$

WRF-real code

Developmental Testbed Center

Rebalance formulation – α , ϕ

Perturbation of the specific volume at level h_k

$$\alpha'_{k} = \frac{R}{p_{00}} \times \left(\theta'_{k} + \theta_{0}\right) \times \left(1 + \frac{R_{v}}{R_{d}}q'_{k}\right) \times \left(\frac{p'_{k} + p_{k}}{p_{00}}\right)^{-\frac{c_{v}}{c_{p}}} - \overline{\alpha}_{k}$$

Perturbation of the geopotential height at levels hw_{kts+1} to hw_{kte+1} :

$$\varphi'_{k} = \varphi'_{k-1} - \int_{\eta w_{k-1}}^{\eta w_{k}} \left(\left(\mu' + \overline{\mu} \right) \times \alpha'_{k-1} + \mu' \times \overline{\alpha}_{k-1} \right) d\eta w$$

- Rebalance applied to P, lpha , ϕ
- T, μ , q used to calculate P, ϕ , α

Comparison of analysis, prognostic and diagnostic variables

- WRFDA uses increment fields
- Rebalance uses full fields
- Geopotential height:
 - Prognostic variable in WRF-ARW
 - No update from GSI

	WRFDA	GSI	Rebalance	WRF-ARW
Control/ Prognostic variables	ΔΤΔΡ _s Δq	$\Delta T \Delta P_s$ $\Delta q \Delta \mu$	Τμq	φμθ
Computed/ diagnostic variables	ΔθΔΡ ΔφΔμ	$\Delta \theta$ (from ΔT)	Ραφ	αΡ

Apply rebalance to test case

1 cycle (2014080106) surface pressure change for each time step

31

Note: rebalance tests use T8 domain.

P' difference (wrfout(0)-wrfinput)

Forecast results: Temperature

100 150 200 GSI_rebalance 250 Pressure Level (hPa) 300 GSI 400 NODA 500 700 850 925 1000 1.0 1.5 0.0 0.5 RMSE (K) T8 domain - 10 day test

Rebalance Test (v3.6.1) : 12 H Forecast Temperature

Mid-level temperature forecasts degraded by rebalance

Rebalance Test (v3.6.1) : 24 H Forecast Temperature

Use of CrIS data

- Significant decrease in the CrIS data assimilated when using GSI v3.2 versus GSI v3.1
- Identified issues:
 - GSI v3.1: dval=1
 - GSI v3.2: dval=0 for CrIS (other radiance types dval=1)
 - dval: allows for relative weighting of different satellite radiance instruments in a thinning box
- Solution:
 - Set dval=0 to all radiance data types
 - no specific types are unequally weighted during the thinning process (therefore increasing the CrIS usage)
 - EMC plans to remove this namelist option so the default value will be set as 0

Summary (Task 4)

- Key issues contributing to the SLP problem
 - Mismatch of GSI analysis variables and ARW prognostic and diagnostic variables
 - Mismatch of GSI analysis variables and SLP computation formulation in the post-processing procedure
- Rebalance of the diagnostic fields shows promise for improving SLP analysis field, but degrades some other forecast fields
 - Pushes analysis and forecasts closer to the background
- Recommendation:
 - Rebalance algorithm posterior to GSI when interfacing with ARW
 - Further study needed to determine how to perform rebalance (e.g, applied to increment fields or full fields) and to which fields it should be applied
 - Implement new GSI surface observation QC (FY2013)
 - Use dval=0 for all radiance data types