Report on EN2 DTC Ensemble Task 2015: Testing of Stochastic
Physics for use in NARRE

Motivation:

With growing evidence that initial-condition uncertainties are not sufficient
to entirely explain forecast uncertainty, the role of model uncertainty is receiving
increasing attention. For instance, most global and regional ensemble systems are
under-dispersive, producing unreliable and over confident ensemble forecasts.
Current plans for a North-American/CONUS ensemble address model-related
uncertainty by using a combination of multi-dycore and multi-physics, where the
physics suites are those used in current operational systems and variations of these
well-tested suites. However, an ensemble system based on multiple physics suites
comes at the price of needing to maintain multiple physics packages as well as
concerns related to individual member bias and climatology. To minimize ensemble
system maintenance and better represent random (not individual member) forecast
error, the ultimate goal is to move towards representing model uncertainty through
a stochastic physics approach. Before moving forward with such a transition, the
value added by applying a stochastic physics approach must be demonstrated.

Experiment Design:

To test a number of different stochastic physics approaches versus multi-
physics, the regional Rapid Refresh (RAP) model was chosen (operational domain in
2015 shown in Figure 1). Stochastic vs. multi-physics simulations were run using a
data set consisting of seven 2013 warm season days. The seven days included May
23 and 29, June 7, 14, 20, 28 and July 5. The simulations were initialized at both 00Z
and 127 and run out 24 hours. In these experiment, we used a "cold start” approach
to model initialization. In other words, there was no cycling or a rapid refresh
component included. For initialization and lateral boundary conditions, the first
eight members of the NCEP Global Ensemble Forecasting System (GEFS) were used.

Several different ensemble experiments were conducted to compare
performance between the multi-physics ensemble and the ensembles created by
employing stochastic approaches. The list of experiments is presented in Table 1.
The first multi-physics (control) ensemble includes variations in convective and PBL
treatments. The second ensemble, SPP, comprises stochastic parameter
perturbations within the GF and MYNN PBL schemes. Ensemble three combines the
SPP approach with SKEB. Similarly, ensemble four combines SPP with SPPT. Finally,
ensemble five includes all three stochastic approaches combined together (SPP,
SKEB, and SPPT).

Configurations of the multi-physics and the stochastic parameter
perturbation ensemble members are presented in Table 2. The first four members



(Control0 to Control3) of the multi-physics ensemble have different convective
treatments while the MYNN PBL scheme have the same. The other four multi-
physics members (Control4 to Control7) include different PBL schemes and a
constant convective treatment with the GF scheme. All of the stochastic physics
ensemble members have the same operational RAP configuration except the first
four members (StochO to Stoch3) including a stochastically perturbed GF scheme,
and the last four members (Stoch4 to Stoch7) included a stochastically perturbed
MYNN PBL scheme. The perturbed parameters were chosen based on suggestions
by the respective parameterization experts and developers. Information on specific
parameter perturbations can be found in Table 3.

Results:

While all simulations took place over the RAP operational North American
domain, verification of results was limited to the continental United States (CONUS).
An example of this domain is shown in Figure 2. Both precipitation and
surface/upper-air verification was performed. Precipitation verification indicated
that all ensembles were slightly under-dispersive, yet the stochastic method
ensembles resulted in very similar rank histograms to the multi-physics ensemble
(Fig. 3). The SPP ensemble (spp) performed the best in all categories of frequency
bias, with all ensembles having a high frequency bias for light precipitation, and a
low frequency bias for heavy precipitation (Fig. 4). Brier scores were better for all
ensembles and for all precipitation thresholds during nighttime hours (Fig 5).

For the other variables analyzed, such as 2-m temperature, 10-m wind, 850
mb temperature, 250 mb wind and 500 mb height, RMSE was found to be similar
and generally increased in time for all ensembles (Fig. 6). Spread also increased
with time for each ensemble, but varied widely between ensembles, with SPP
containing the least spread. When the spp ensemble was combined with other
stochastic methods (SKEB and SPPT), a statistically significant increase in spread
was observed. Therefore, spread/error ratios were consistently larger (closer to 1)
for ensembles that combined different stochastic approaches (spp skeb, spp sppt
and spp skeb sppt) for all variables and all lead times (Fig. 7). For most of the lead
times and all variables, the best spread/error ratios were produced for the
ensemble that combined all stochastic approaches together (spp skeb sppt).

While the stochastic parameter perturbation approach showed some
promise, especially for precipitation simulations, its general performance is
hampered by limited spread. To determine whether this scheme adds value in
combination with other spread-generating approaches, we assessed the
performance of the spp sppt experiment against that of using only SPPT (sppt).
Figure 8 shows the percent difference of spp sppt over sppt for a number of
verification metrics. The bars in Fig. 8 are plotted only for variables, lead times and
statistics for which the difference was non-zero. Analysis shows that the use of SPP
generally has a positive impact. This benefit is most pronounced by increasing
spread, which consequently improves spread/error ratio. The impact on CRPS was
overall positive, with the exception of upper air variables in 12 UTC model runs.



Conclusions:

A new stochastic parameter perturbation (SPP) scheme was developed and
compared alone and in combination with other stochastic methods (SKEB, and
SPPT) against a multi-physics, baseline configuration. The SPP scheme introduces
temporally and spatially varying perturbations to key parameters in the GF
convection and MYNN PBL parameterizations. Twenty-four hour RAP ensemble
simulations were verified for seven days during the summer of 2013, using GEFS
data for 00 UTC and 12 UTC initial times and lateral boundary conditions. The most
important findings are summarized below:

* Alone, the parameter perturbations of SPP introduce insufficient spread.
However, when combined with SKEB and/or SPPT the spread is as large, and
for some instances, even larger than for a multi-physics ensemble. Overall
the ensemble mean error is changed only slightly.

* An ensemble created by combining three stochastic approaches (SPP, SKEB
and SPPT; spp skeb sppt) generally outperformed the multi-physics, control
ensemble for most of the examined variables, most of the evaluated lead
times, and most of the employed statistics. SKEB made a larger impact on
spread associated with upper level wind and geopotential heights, while
SPPT had a larger impact on spread for near-surface temperature.

* Combining SPP with SPPT had generally a positive impact, on the order of a
2-10% improvement over an ensemble using SPPT alone. This is an
important finding since SPP represents uncertainty at its source, in a
physically consistent way, without introducing systematic member biases.

Results show that parameter perturbations alone do not generate sufficient
spread to remedy the under-dispersion in short-term ensemble forecasts, and that a
combination of several stochastic schemes can outperform any single scheme. This
result implies that a synthesis of different approaches is best suited to capture
model error in its full complexity. This finding may potentially have a large impact
on the design of next-generation high-resolution regional, as well as global,
operational ensembles. The single-physics stochastic approach clearly provides a
viable alternative to using the costly and theoretically problematic multi-physics
approach in operations.



Tables:

Number Ensemble
1 Multi-physics (Control)
2 Stochastic parameter perturbation for
GF and MYNN (stoch)

3 Stochastic parameter perturbation and
SKEB (stoch_skeb)

4 Stochastic parameter perturbation and
SPPT (stoch sppt)

5 Stochastic parameter perturbation and

SKEB and SPPT (stoch skeb sppt)

Table 1. List of ensembles created for comparison between multi-physics and stochastic

approaches.
Multi-Physics Convective PBL LSM
Members Parameterization Parameterization Parameterization
Control0 OSAS MYNN RUC
Controll BMIJ MYNN RUC
Control2 GF MYNN RUC
Control3 NSAS MYNN RUC
Control4 GF MY]J RUC
Control5 GF YSU RUC
Control6 GF BOULAC RUC
Control7 GF MYNN RUC
Stochastic Convective PBL LSM
Members Parameterization Parameterization Parameterization
Stoch0 GF-perturbed MYNN RUC
Stochl GF-perturbed MYNN RUC
Stoch2 GF-perturbed MYNN RUC
Stoch3 GF-perturbed MYNN RUC
Stoch4 GF MY NN-perturbed RUC
Stoch5 GF MYNN-perturbed RUC
Stoch6 GF MYNN-perturbed RUC
Stoch7 GF MYNN-perturbed RUC

Table 2. List of members for multi-physics and stochastic approaches.




Perturbations to Grell-Freitas Convection Scheme

Perturbed Parameter Name
Closure xf ens
Namelist Parameter Value (in SI) Value (other than SI)
rand_perturb?2 1
gridpt_stddev_rand_pert2 0.3
stddev_cutoff_rand_pert2 3.0
lengthscale_rand_pert2 150000 m 150 km
timescale_rand_pert2 21600 s 6h

Perturbations to Planetary Boundary Layer Scheme

Perturbed Parameter Name
Turbulent Mixing Length el
Subgrid Cloud Fraction (correlated with EL) cldfra_bl
Thermal and Moisture Roughness Length (anti- C7IL

correlated and twice the amplitude)

Namelist Parameter Value (in SI) Value (other than SI)
rand_perturb3 1
gridpt_stddev_rand_pert3 0.15
stddev_cutoff_rand_pert3 2.0
lengthscale_rand_pert3 700000 m 700 km
timescale_rand_pert3 21600 s 6h

Table 3: Summary of namelist parameter settings for stochastic perturbation

patterns.
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Figure 2. Example of the HRRR operational domain.
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Figure 3. Rank histogram for 3-hourly precipitation for 00Z initialization and for
control (red), stochastic (lime), stoch_skeb (green), stoch_sppt (dark blue), and
stoch_skeb_sppt (purple) ensembles.
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Figure 4: Frequency bias for 00Z initialization and for three precipitation thresholds
a) 0.254 mm, b) 6.35 mm, and c) 12.7 mm.
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Figure 5. Brier score for 12Z initialization and for three precipitation thresholds: a)
0.254 mm, b) 2.54 mm, and c) 12.7 mm.
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Figure 6: RMSE (left column) and corresponding spread (right column) for a) and b)
2-m temperature, c) and d) 850-hPa temperature, e) and f) 10-m zonal wind, g) and
h) 250-hPa wind, i) and j) and 500-hPa geopotential height for simulations
initialized at 00 UTC.
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Figure 7: Spread/Error ratio for a) and b) 2-m temperature, c) and d) 850-hPa
temperature, e) and f) 10-m zonal wind component, g) and h) 250-hPa zonal wind
component, and i) and j) 500-hPa geopotential height, respectively for 00 UTC
initialization (left column) and 12 UTC initialization (right column).
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Figure 8: Percentage change of the SPP over spp sppt ensemble in a) RMSE, b)

spread, c) spread/error ratio, and d) CRPS for 00 UTC initialization. Similarly,

percentage change of the SPP over spp sppt ensemble in e) RMSE, f) spread, g)
spread/error ratio and h) CRPS for runs initialized at 12 UTC.



