DTC/HMT Verification Overview

Tara Jensen and Ed Tollerud

for

DTC/HMTTeam

The Development Testbed Center (DTC) What do we do?

The DTC Architecture

Evaluation system built on DTC Model Evaluation Tool (MET)

MET is a set of tools for evaluating model forecasts.

Preprocessing

- Point Obs
- Precip Accumulation
- Sub-domain Masking

• Statistics

- Traditional methods
- Spatial methods

Post-processing

- Aggregation over time and regions
- METviewer database and display system

MET Traditional Measures (from Point-Stat and Grid-Stat)

Gridded and point verification

Multiple interpolation and matching options

Matching approaches:

MET allows users to select the number of forecast grid points to match to a point observations and the statistic to use to summarize the forecasts.

- Statistics
 - **Continuous** MAE, RMSE, ME, Correlation, BCRMSE, etc.
 - Categorical POD, FAR, CSI (Threat), GSS (ETS), Freq Bias, etc.
 - **Probabilistic** Brier Score, Reliability, ROC, Rank Histogram*, CRPS* *in spring release

How does model performance change over time??

VALIDTIME: CONSTANT INITTIME: CHANGES Valid: 2010012112V_APCP_06 RMSE vs. FCST_LEAD = Obs: Stage IV NStats 1.0 -1.0 "V" denotes this is a valid time Base Rate ~ observed event fraction or % of gauges or grid pnts reporting at or above threshold. Statistics associated with low 0.8 -0.8 Base Rate (observed event frac.) >0.000" base rates have less meaning or "significance". Here it is flat because observation field does not change because valid time is const. 0.6 RMSE (in.) 0.4 0.2 0.2 Unweighted – NoBias Correction Ensemble Mean 0.0 -0.0 108 12 18 24 30 36 78 90 96 102 FCST_LEAD ens-mean RMSE arw-tom-gep0 RMSE arw-tom-gep3 RMSE arw-torr-gep7 RMSE nmm-ter-gep4 RMSE nmm-ter-gep8 RMSE arw-ter-gep5 RMSE arw-ter-gep1 RMSE ens-mean >0.000 BASER arw-sch-gep2 RMSE arw-sch-gep6 RMSE

How does each model perform on a run-by-run basis??

MET Spatial Verification approaches (using MODE)

- Higher Resolution forecasts of spatially-coherent fields (e.g., precipitation) are typically penalized using traditional statistics
- Spatial techniques provide a potentially more meaningful evaluation
- Examples
 - What is wrong with the forecast?
 - At what scales does the forecast perform well?
 - How does the forecast perform on attributes of interest to users?

MODE – Spatial Verification Steps #1-4: How objects are identified in MODE...

Method For Object-Based Diagnostic **Evaluation**

Step #1

Start with the raw data field.

In this case, a precipitation field.

Step #3

Threshold the smoothed field.

This produces an on/off mask field.

Step #2

Apply convolution operator.

This is basically a smoothing operation.

Step #4

Restore original data to object interiors.

This gives us our objects.

Figure courtesy of Randy Bullock, NCAR/RAL

Once you have objects

- **Merging** associating objects in the same field to form "clusters" that may be more representative of a broader scale organization (i.e. within the forecast field and the observation field)
 - Uses a fuzzy logic algorithm and/or -
 - A second slightly lower threshold
- Matching associating objects and clusters in different fields (i.e. between forecast and observation field)
 - Uses a fuzzy logic algorithm

Example of Matching & Merging

Use of MODE to show changes in IWV Component of AR PWAT forecasts vs SSM/I Observations

MODE Object Comparison of GFS Forecasts with SSM/I Observation for 25 February, 2004

In this case the forecast width and location of AR landfall appears to be a function of forecast lead time.

Use of Attributes of Objects defined by MODE

Centroid Distance: Provides a quantitative sense of spatial Displacement of AR core.

Small is good

Axis Angle: Provides an objective measure of how well the AR impact on terrain is captured. *Small is good*

Area Ratio: Provides an objective measure of whether there is an over- or underprediction of areal extent of AR. *Close to 1 is good*

Use of Attributes of Objects defined by MODE

Symmetric Diff: May be a good summary statistic for how well Forecast and Observed objects match. Small is good

P50/P90 Int: Provides objective measures of Median (50th percentile) and near-Peak (90th percentile) intensities found in objects.

Ratio close To 1 is good

Total Interest: Summary statistic derived from fuzzy logic engine with user-defined Interest Maps for all these attributes plus some others. Close to 1 is good

Use of Attributes of Objects defined by MODE

Symmetric Diff: May be a good summary statistic for how well Forecast and Observed objects match. *Small is good*

P50/P90 Int: Provides objective measures of Median (50th percentile) and near-Peak (90th percentile) intensities found in objects.

Ratio close To 1 is good

If forecast
was rotated
and moved
North —
Total Interest
may increase

Total Value of the content of the conten

Total Interest: Summary statistic derived from fuzzy logic engine with user-defined Interest Maps for all these attributes plus some others. *Close to 1 is good*

Question?

- Next run through the website
- After Ed will discuss the 20 January case study to demonstrate how this site might be used
 (DTC-HMT eval 20jan2010 case.pdf)