The Developmental Testbed Center Objective Evaluation Performed During the **P.48** Hazardous Weather Testbed 2010 Spring Experiment. Tara Jensen^{1*}, Steve Weiss², Jack Kain³, Michelle Harrold¹, Ming Xue⁴, Fanyou Kong⁴, Barb Brown¹, Patrick Marsh³, Adam Clark³, Kevin Thomas⁴, Mike Coniglio³, and Russ Schneider² ¹ NCAR/Research Applications Laboratory (RAL), Boulder, Colorado omental Testbed Center ² NOAA/Storm Prediction Center (SPC), Norman, Oklahoma NCAR ³ NOAA/National Severe Storms Laboratory (NSSL), Norman, Oklahoma ⁴ Center for Analysis and Prediction of Storms (CAPS), University of Oklahoma, Norman, Oklahoma *Presenting Author E-mail: jensen@ucar.edu Abstract: The DTC objective evaluation during the 2010 HWT Spring Experiment complements the subjective evaluation that has traditionally taken place. With the addition of

probabilistic verification capabilities in the DTC's Model Evaluation to to the probabilistic products and deterministic forecasts will be evaluated this year. In addition to the severe convective weather component, the 2010 Spring Experiment objective evaluation of forecasts from WRF convection- -allowing models for solution plan includes evaluation of forecasts from WRF convection- -allowing models for solution plan includes evaluation of forecasts from WRF convection- -allowing models for solution plan includes evaluation plan includes evaluation of forecasts from WRF convection- -allowing models for solution plan includes evaluation plan includes e extreme precipitation events as well as aviation related thunderstorm indicators. This year's Spring Experiment ran from May 17 – June 18, 2010.

Approach

This year DTC evaluated (in near real-time):

•CAPS SSEF 4 km ensemble members as deterministic run (26 multi-model) •CAPS 1km deterministic

•CAPS SSEF 4 km ensemble products (15 radar assimilation models used)

•NOAA/ESRL HRRR 3 km deterministic model

•NOAA/EMC NAM 12 km deterministic model (baseline)

•NOAA/EMC SREF 32-35 km ensemble products (21 member multi-model) (baseline)

•Observations: NSSL NMQ Q2 QPF and Reflectivity products

A full description of the each model contributed to HWT may be found on their website at: http://hwt.nssl.noaa.gov/Spring 2010/. Objective available evaluation results are http://verif.rap.ucar.edu/eval/hwt/2010/.

Variables Evaluated :

FCST Field	Observation (NSSL Q2 fields)	Traditional (MET/Grid-Stat)	Spatial (MET/MODE)	Models	
Prob of Exceed (0.5", 1", 2" over 3 and 6 hrs)	0.5", 1", 2" QPE over 3 and 6 hrs	Brier Score, Decomp of Briar score, Area under ROC	None	Ensemble products from CAPS and SREF	
50 [%] Prob of Exceed (0.5", 1", 2" over 3 and 6 hrs)	0.5", 1", 2" QPE over 3 and 6 hrs	None	MMI, Intersection Area, Area Ratio, Centroid Distance, Angle Difference, % Objects and Area Matched, 50 th and 90 th percentile	Ensemble products from CAPS and SREF	
QPF (0.25", 0.5", 1.0", 2" over 3 and 6 hrs)	0.25", 0.5", 1.0", 2" QPE over 3 and 6 hrs	GSS, CSI, FAR, PODY, FBIAS	See above	CAPS members, CAPS ens mean, SREF ens mean, HRRR, NAM	
Sim. Comp. Refl (20,30,40,50 dBZ)	Composite refl (20,30,40,50 dBZ)	GSS, CSI, FAR, PODY, FBIAS	See above	CAPS members, CAPS ens products, HRRR, NAM	
18 dBZ Echo Top (18, 25, 30, 35, 40, 45 kft)	18dBZ Echo Top (18, 25, 30, 35, 40, 45 kft)	GSS, CSI, FAR, PODY, FBIAS	See above	CAPS members, CAPS ens products, HRRR	
Prob of 40dBZ echos	Composite reflectivity (40dBZ)	Brier Score, Decomp of Briar score, Area under ROC	None	Ensemble products from CAPS and SREF	
50% Prob of 40dBZ echos	Composite reflectivity (40dBZ)	None	See above	Ensemble products from CAPS	

Grid: All models were re-gridded to the 4 km Stage IV grid configuration.

Domains: The 00 UTC models were evaluated over three regions: the entire domain, the static VORTEX-2 domain provided by CAPS at the 12 UTC initialization time, and a regional, movable area-of-interest domain selected by HWT Spring Experiment participants each day. Figure 1 depicts examples of these domains.

Probability QPF (PQPF)	E
MODE Objects for >0.5 inch	N
Simple PQPF = Ensemble	
Relative Frequency at Gridpnt	
PN PQPF = Neighborhood	
method applied before computir	ng
Ens. Rel. Freq.	
PM QPF = Probability Matching	
used to compute QPF intensity	
Statistics for Single Valid Tim	ne
8 Jun 2010 – 12 UTC	

Details:

DOMAIN: DAILY

Fields:

Observed Reflectivity (REFC)

Forecasted Simulated REFC

Observed 18 dBZ Radar Echo Top

(RETOP) height

	NSSL Q2 QPE	SSEF Simple PQPF	SREF Simple PQPF	SSEF PN PQPF	NAM QPF	SSEF PM QPF	Spatia	l Attril	butes	(from MET	/MODE)		
and the second	APCP_06H_Vld: 20100608_12 Observation: NSSL 02	F PROB_06H Vld: 20100608_12 Forecast: ssef_s4ens	F PROB_06H VId: 20100608_12 Forecast: sref	F PROB_06H VId: 20100608_12 Forecast: ssef_s4ens_pn	F APCP_06H VId: 20100608_12 F Forecast: nam	APCP_06H VId: 20100608_12 F Forecast: ssef_s4ens_pm	Model	CAPS Simple PQPF	SREF Simple PQPF	CAPS PN PQPF	NAM QPF	CAPS PM QPF	CAPS Simple QPF
					e2		Centroid Distance	33.0 km	186.2 km	69.8 km	152.2 km	53.0 km	51.8 km
13				- 67	••		Area Ratio (F/O)	0.56	0.20	1.15	0.45	0.71	0.66
-	APCP_06H_VId: 20100608_12 Observation: NSSL Q2	F PROB_06H VId: 20100608 12 F ssef_s4ens (solid) Obs (outln)	1; PROB_06H Vid: 20100608_12 I sref (sõlid) Obs (outin)	1: PROB_06H VId: 20100608_12 ssef_s4ens_pn (solid) Obs (out)	F1; APCP_06H_VId: 20100608_12_F1 n) nam (solid) Obs (outin)	APCP_06H_VId: 20100608_12_F1; ssef_s4ens_pm (solid) Obs (outIn)	Intersect. Area	6539 gridsq	1530 gridsq	9798 gridsq	4178 gridsq	8112 gridsq	7680 gridsq
							50% Accum Diff (F-O)	n/a	n/a	n/a	0.007 in	0.07 in	-0.08 ir
Ten - I							90% Accum Diff (F-O)	n/a	n/a	n/a	0.70 in	0.54 in	0.02 in
	PQPF 0		50 75		D T 0.1 0.5 1.0	1.5 2.0 3.5 6.0	Diff (F-O) Table 3. 12 UTC. data is from	Spatial at Statistics n 15hr for	tributes fo calculate recast vali	or 12hr fore d by the D d at same	ecast valid TC MET time.	I on 8 Jun MODE to	ol. SI

al Attributes (from MET/MODE)

Model	CAPS Simple PQPF	SREF Simple PQPF	CAPS PN PQPF	NAM QPF	CAPS PM QPF	CAPS Simple QPF
Centroid Distance	33.0 km	186.2 km	69.8 km	152.2 km	53.0 km	51.8 km
Area Ratio (F/O)	0.56	0.20	1.15	0.45	0.71	0.66
Intersect.	6539	1530	9798	4178	8112	7680
Area	gridsq	gridsq	gridsq	gridsq	gridsq	gridsq
50% Accum Diff (F-O)	n/a	n/a	n/a	0.007 in	0.07 in	-0.08 in
90% Accum Diff (F-O)	n/a	n/a	n/a	0.70 in	0.54 in	0.02 in
Table 3. 3 12 UTC.	Spatial at Statistics	tributes fo calculate	r 12hr fore d by the D	ecast valid TC MET	on 8 Jun MODE too	e 2010 a ol. SRE

Based on Area Under the Curve With a higher Area under the Receiver Operating Characteristic Curve SSEF PN QPN may be deemed the slightly more skillful for this application. Based on Centroid Distance, Area Ratio, Intersection Area

reliability

SSEF Ensemble Products appear to provide better QPF location guidance than SREF and NAM for this case. **Based on 50th Percentile and 90th Percentile Intensity Differences** SSEF Simple Ensemble Mean provided the

best guidance for this case.

Aggregations of these individual case products will become available on the website near the end of the summer.

Discussion: **Based on Visual Inspection** (of Fields and MODE Objects to left)

SSEF Probability Matched Mean appears to over-estimate RETOP spatial coverage

Thompson scheme members appears to be significantly over-predicting the stratiform cloud shield (green in REFC over predicted leading

The DTC/HWT Objective Evaluation goals include are to 1) to provide objective evaluations of the experimental forecasts; 2) to supplement and compare to subjective assessments of performance; and 3) to expose the forecasters and researchers to both new and traditional approaches for evaluating forecasts.

In total, 30 models and 3 ensemble product methods were evaluated in near real-time for the 5 week HWT 2010 Spring Experiment. Three forecast challenges were addressed: Severe Weather, QPF, and Aviation Weather. The DTC evaluated 1-2 variables for each area.

Some preliminary objective results:

•Models using radar assimilation methods exhibited improved skill during 0-6 hr lead times •CAPS Convective Allowing Models with radar assimilation generally exhibited improved skill over operational baselines (such as NAM, HRRR, and SREF) but this improvements may be a by-product of increased frequency bias and hence may result in increase false alarms.

Summary

Preliminary observations about Ensemble Products:

•Simple arithmetic mean field only available for QPF field – it showed improved skill over other methods on some days but not all. Further investigation is recommended.

•Probability Matched mean product exhibits higher skill for reflectivity (REFC) and quantitative precipitation forecast (QPF) fields but appears to produce an sizable frequency bias (FBIAS) for radar echo top (RETOP), and hence increased false alarm ratio (FAR)s that may make the field unusable

•Probability Neighborhood product was evaluated for QPF only. While the product exhibits a smoother Probability QPF field, which in general appears to increase traditional skill, the tendency for a sizable frequency bias may decrease its utility. The true test is which product was found to be the most useful. Further investigation of subjective logs is needed.

Acknowledgements

AGGREGATION for RETOP FCST LEAD F24 FBIAS

OVER FCST THRESH ENDING 20100618 – Region: DAILY

The Developmental Testbed Center is funded by the National Oceanic and Atmospheric Administration, Air Force Weather Agency and the National Center for Atmospheric Research. The CAPS research was supported by an allocation of advanced computing resources provided by the National Science Foundation. The computations were performed on Athena (a Cray XT4) at the National Institute for Computational Science (NICS; http://www.nics.tennessee.edu/).

Dedicated work by many individuals led to the success of SE2010. Paul Oldenburg, John Halley Gotway, Randy Bullock, and Nancy Rehak developed the DTC evaluation system. David Ahijevych, Jamie Wolff, and Isidora Jankov, also from the DTC, led discussions related to forecast verification during SE2010 daily activities. At the SPC, HWT operations were made possible by technical support from Israel Jirak, Chris Melick, and Andy Dean. At the NSSL, Ryan Sobash provided valuable scientific and technical support. David Novak, Faye Barthold (from NOAA/Hydrometeorological Prediction Center), and Jason Levit (from NOAA/Aviation Weather Center) provided much needed guidance on meaningful evaluation criteria.